Some rings for which the cosingular submodule of every module is a direct summand
نویسندگان
چکیده
منابع مشابه
Modules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملrings for which every simple module is almost injective
we introduce the class of “right almost v-rings” which is properly between the classes of right v-rings and right good rings. a ring r is called a right almost v-ring if every simple r-module is almost injective. it is proved that r is a right almost v-ring if and only if for every r-module m, any complement of every simple submodule of m is a direct summand. moreover, r is a right almost v-rin...
متن کاملH$^*$-condition on the set of submodules of a module
In this work, we introduce $H^*$-condition on the set of submodules of a module. Let $M$ be a module. We say $M$ satisfies $H^*$ provided that for every submodule $N$ of $M$, there is a direct summand$D$ of $M$ such that $(N+D)/N$ and $(N+D)/D$ are cosingular. We show that over a right perfect right $GV$-ring,a homomorphic image of a $H^*$ duo module satisfies $H^*$.
متن کاملA KIND OF F-INVERSE SPLIT MODULES
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS
سال: 2014
ISSN: 1300-0098,1303-6149
DOI: 10.3906/mat-1210-15